Postingan

Soal Persamaan dan Petidaksamaan Rasional dan Irasional

Gambar
 Persamaan Rasional 1.  2.  3.  4.  5.  Pertidaksamaan Rasional 1.  2.  3.  4.  5.  Persamaan Irasional 1. Penyelesaian  √ 2 x + 6 = 0 adalah.. a. x = 3 b. x = -3 c. x = 0 d. x = -3 atau x = 3 e. tidak ada Jawab: Diketahui √ 2 x + = 0 Kuadratkan kedua ruas, lalu selesaikan: ( √ 2 x + 6 = 0) ² = 0 ² 2x + 6 = 0 2x = -6 x = -3 Syarat akar: 2x + 6 ≥ 0 ⇔ x ≥ -3 Karena x = -3 memenuhi syarat x ≥ -3, maka solusi ini diterima. Jadi, penyelesaian persamaan irasional tersebut adalah x = -2 (B) 2. Nilai x yang memenuhi persamaan √ x - 3 = 5 - x adalah... a. x = -4 b. x = 4 c. x = 7 d. x = -4 atau x = 7 e. x = 4 atau x = 7 jawab: Diketahui √ x - 3 = 5 - x Kuadratkan kedua ruas, lalu selesaikan. ( √ x - 3) ² = (5 - x) ² x - 3 = 25 - 10x + x ² x ² - 11x + 28 = 0 (x - 4) (x - 7) = 0 Diperoleh x = 4 atau x = 7 Syarat akar (1): x - 3 ≥ 0 ⇔ x ≥ 3 Syarat akar (2): 5 - x ≥ 0 ⇔ x ≤ 5 Sekarang, analisislah menggunakan bantuan garis bila...

Persamaan dan Pertidaksamaan Irasional

Gambar
 Persamaan Irasional Persamaan Irasional adalah suatu persamaan yang mengandung atau memuat variabel yang berada didalam tanda akar. Contoh: Berikut ini bukan persamaan irasional, karena variabelnya tidak berada dalam tanda akar, walaupun persamaan tersebut mengandung tanda akar: Secara umum persamaan irasional berbentuk : Dengan F(x) dan G(x) suatu bilangan polinominal (suku banyak). Setiap bilangan real yang disubstitusikan ke dalam persamaan irasional memberikan pernyataan yang benar disebut penyelesaian atau akar persamaan irasional. Jika kita melakukan substitusi kedalam persamaan irasional akan memberikan pernyataan yang benar maka inilah yang disebut Himpunan Penyelesaian (HP). Cara menyelesaikannya adalah dengan menghilangkan tanda akarnya terlebih dahulu, yaitu dengan cara mengkuadratkan ruas kiri dan ruas kanannya. Proses mengkuadratkan tersebut dapat dilakukan berulang kali, sampai tanda akarnya hilang dan diperoleh persamaan baru yang ekuivalen. Penyelesaian persamaan i...

Persamaan dan Pertidaksamaan Rasional

Gambar
 Persamaan Rasional Persamaan rasional adalah pecahan dengan satu variabel atau lebih pada bagian pembilang atau penyebut. Persamaan rasional adalah pecahan apapun yang melibatkan setidaknya satu persamaan rasional. Ciri-ciri persamaan rasional ini biasanya tidak mempunyai bentuk akar (√). Adapun bentuk umum persamaan rasional adalah sebagai berikut: Cara menyelesaikan persamaan rasional: 1.       Pindahkan semua variabel kesebelah kiri dan yang bukan variabel kesebelah kanan, atau sebaliknya (tentunya sesuai aturan matematika). 2.       Tuliskan HP (Himpunan Penyelesaian). Contoh soal: 1.  2.  Pertidaksamaan Rasional Pertidaksamaan merupakan kalimat matematika terbuka yang menggunakan sebuah tanda > (lebih dari), < (kurang dari) ≤ (kurang dari atau sama dengan) dan  ≥ (lebih dari atau sama dengan). Pertidaksamaan rasional ialah suatu bentuk pertidaksamaan yang memuat fungsi rasional, yang mana fungs...